Displacement rank and quasitriangular decomposition for r-Toeplitz matrices

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quantized Rank R Matrices

First some old as well as new results about P.I. algebras, Ore extensions, and degrees are presented. Then quantized n × r matrices as well as certain quantized factor algebras M q (n) of Mq(n) are analyzed. For r = 1, . . . , n − 1, M q (n) is the quantized function algebra of rank r matrices obtained by working modulo the ideal generated by all (r+1)×(r+1) quantum subdeterminants and a certai...

متن کامل

A fast algorithm for ∈R-1 factorization of Toeplitz matrices

In this paper a new order recursive algorithm for the efficient 9B-l factorization of Toeplitz matrices is described. The proposed algorithm can be seen as a fast modified Gram-Schmidt method which recursively computes the orthonormal columns si, i = 1,2, . ,p, of 1, as well as the elements of WI, of a Toeplitz matrix X with dimensions L x p. The 2 factor estimation requires 8Lp MADS (multiplic...

متن کامل

Monotone convex sequences and Cholesky decomposition of symmetric Toeplitz matrices

This paper studies off-diagonal decay in symmetric Toeplitz matrices. It is shown that if the generating sequence of the matrix is monotone, positive and convex then the monotonicity and positivity are maintained through triangular decomposition. The work is motivated by recent results on explicit bounds for inverses of triangular matrices. © 2005 Elsevier Inc. All rights reserved. AMS classifi...

متن کامل

Rank properties of a sequence of block bidiagonal Toeplitz matrices

In the present paper, we proposed a new efficient rank updating methodology for evaluating the rank (or equivalently the nullity) of a sequence of block diagonal Toeplitz matrices. The results are applied to a variation of the partial realization problem. Characteristically, this sequence of block matrices is a basis for the computation of the Weierstrass canonical form of a matrix pencil that ...

متن کامل

The spectral decomposition of near-Toeplitz tridiagonal matrices

Some properties of near-Toeplitz tridiagonal matrices with specific perturbations in the first and last main diagonal entries are considered. Applying the relation between the determinant and Chebyshev polynomial of the second kind, we first give the explicit expressions of determinant and characteristic polynomial, then eigenvalues are shown by finding the roots of the characteristic polynomia...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Linear Algebra and its Applications

سال: 1987

ISSN: 0024-3795

DOI: 10.1016/0024-3795(87)90115-7